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In this supplementary material, we provide the proofs of
Theorem 3 and Theorem 4 in the paper. The Theorem 3
states that the Fréchet mean of a set of SPD matrices based
on the Jeffrey divergence, d 7, admits a closed form solution.

Theorem 3. The Fréchet mean of a set of SPD matrices
{X}m, € 8¢ with by is

o= P—l/Q(Pl/QQpl/Q)l/QP—l/Q , (1)
where P =3, X "and Q =Y, X .

Proof. The solution is obtained by zeroing out the deriva-

tive of >0"62(X;,p) with respect to p. At p,
952
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The quadratic equation AB A = C'is called a Riccati equa-
tion [1] and has the following unique and closed form solu-
tionfor B = 0and C = 0
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Comparing the form of (2) with the Riccati equation con-
cludes the proof. We note that a different proof is also pro-
vided in [3]. O

Similarly the Theorem 4 states that, for a set of linear
subspaces under the projection metric,  p, we have the lux-
ury of obtaining the Fréchet mean analytically.

Theorem 4. The Fréchet mean for a set of points
{Xi};il’ X, € gf; based on dp admits a closed-form
solution.

Proof. We need to solve
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We note that with the orthogonality constraint on points,

e, uTp= X;‘FXZ =1,
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Therefore to minimize (3), one should maximize
Tr{u” ( > XiXiT) p} by taking into account the con-

straint pT'p =1, iie.,

p* & arg max Tr{uT<§m:XiXiT)u}, (€))
© i=1

st. ptp= I,

The solution of (4) is obtained by computing the p largest
eigenvectors of > " X; X ZT according to the Rayleigh-
Ritz theorem [2], which concludes the proof. O
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